Out-of-pile and postirradiated examination of lanthanide and lanthanide-palladium interactions for metallic fuel

2021 
Abstract Palladium is being investigated as a fuel additive to bind with and potentially immobilize lanthanide fission products. A primary cause of fuel-cladding chemical interaction (FCCI) is the lanthanide fission products migrating to the fuel periphery and interacting with the cladding. This interaction will lead to wastage of the cladding and eventually to a cladding breach. Palladium has previously been identified as a promising additive used to prevent or decrease FCCI by reacting with the lanthanide fission products. In the current study, an alloy cast from the four highest abundant lanthanides found in irradiated metallic fuel, Nd, Ce, Pr, and La, with and without Pd, has been characterized using neutron diffraction, scanning electron microscopy, and electron probe microanalysis. In the lanthanide-Pd intermetallic compounds, all of the constituent compounds, i.e. Nd-Pd, Ce-Pd, La-Pd and Pr-Pd are known. There is very good agreement, both structurally and compositionally, between the out-of-pile lanthanide alloy and lanthanide fission products characterized in irradiated fuels. In both cases, the lanthanide elements form a solid solution in a hexagonal crystal structure. The out-of-pile lanthanide alloy follows Vegard's Law, with the measured and calculated (weighted average of constituents) lattice parameters being within 1% for both the a and c parameters. Pd bonds with the lanthanides (Ln) forming the phases LnPd and Ln7Pd3. The results indicate the properties of lanthanide compounds in irradiated metallic fuel can be reliably simulated in out-of-pile experiments.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    1
    Citations
    NaN
    KQI
    []