Lactate as a Biomarker for Sepsis Prognosis

2016 
Blood lactate concentrations reflect the balance between lactate production and clearance. During glycolysis in resting state, most glucose is converted to pyruvate. Pyruvate is metabolized through the aerobic pathway, to acetyl-CoA by pyruvate dehydrogenase (PDH) to enter the tricarboxylic acid cycle that is the main source of energy for cellular metabolism. In times of stress, tissue oxygen (O2) needs are no longer met by O2 delivery, which results in cellular hypoxia. Cell hypoxia induces a switch from aerobic metabolism to the less efficient anaerobic metabolism in which PDH is inhibited and lactate formation from pyruvate by lactate dehydrogenase (LDH) is favored. On the other hand, high inflammatory states such as sepsis accelerated glycolysis leads to overproduction of lactate [1]. However, as lactate is a normal product of glucose metabolism, many other factors could increase lactate levels in the absence of tissue hypoperfusion due to malignancy, liver disease, or mitochondrial disorder. Normally, the liver removes 70% of lactate. When hepatic blood flow decreases to 25% of normal, the capacity of the liver to metabolize lactate is diminished and lactate clearance is reduced [2]. Although overproduction of lactate in response to endotoxin or tissue hypoxia accounts for some of the rise in lactate in septic states, a decrease in hepatic lactate extraction and utilization also occurs.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    11
    References
    8
    Citations
    NaN
    KQI
    []