In Vivo Assessment of the Next Generation Microtubule-Destabilizing Agent AB8939 in Patient-Derived Xenograft Models of Acute Myeloid Leukemia

2019 
AB8939 is a novel, synthesized, small-molecule microtubule-destabilizer drug with proven prolific and potent in vitro activity against numerous cancer cell lines. In vitro and ex vivo studies (reported separately) have determined that AB8939 is well-suited for the treatment of hematopoietic tumors, in particular relapsed/refractory or poor-prognosis acute myeloid leukemia (AML), notably being able to circumvent two major resistance mechanisms associated with AML (i.e. P-glycoprotein and myeloperoxidase-mediated resistance). The therapeutic potential of AB8939 was investigated further through a series of in vivo experiments using three patient derived xenograft (PDX) mouse models and a cytarabine (Ara-C) resistant mouse model (MOLM14). MOLM14 cells and selected PDX primary cells were transduced to constitutively express luciferase for bioluminescence monitoring of tumor growth. In an Ara-C-sensitive AML PDX mouse model (ex vivo IC50 response to Ara-C in survival/proliferation assays was 0.82 µM), AB8939 (6 mg/kg in weekly cycles of 5 consecutive days) showed a statistically significant, 10-fold decrease in the amount of blasts detected in blood following 14 days of treatment compared with control, and a superior treatment effect compared with Ara-C (single cycle of 10 mg/kg twice per day for 4 consecutive days) in terms of decreased blasts in blood. In an Ara-C-refractory AML PDX mouse model (ex vivo IC50 response to Ara-C in survival/proliferation assays was 6.4 µM), animals treated with single agent AB8939 (6 mg/kg in weekly cycles of 5 consecutive days) showed reduced disease progression compared with control and Ara-C (single cycle of 10 mg/kg twice per day for 4 consecutive days) as evidenced from at least 10-times fewer blasts in blood, spleen and bone marrow following 28 days of treatment. This effect was even more pronounced for the combination treatment of AB8939 and Ara-C, suggesting a synergistic response. In a PDX mouse model that is highly resistant to Ara-C (ex vivo IC50 response to Ara-C in survival/proliferation assays was 8.3 µM), AB8939 as a single agent or in combination with Ara-C showed a significant (P For the well-established xenografted MOLM14 mouse model, immune-deficient NSG (NOD scid gamma) mice (5 animals per group) were injected intravenously with MOLM14-luciferase cells and treated over a period of 21 days with single agent AB8939 (subcutaneous injection) at a dosage of 6 mg/kg every day or 12 mg/kg every other day; Ara-C (intraperitoneal injection, single cycle of 10 mg/kg twice per day for 4 consecutive days); or vehicle. AB8939 caused a significant dose-dependent reduction in tumor volume (p=0.001) and increased survival with respect to control or single agent Ara-C (median survival at 6 and 12 mg/kg was 39 and 42 days, respectively, corresponding to a 60% improvement compared with the control and Ara-C groups). A similar dosing schedule study showed single agent AB8939 at 6 mg/kg administered over 6 consecutive days (6 ON/1 OFF) was optimal with this cohort having a median survival of 59 days, corresponding to a 100% improvement over control. Overall, these in vivo data provide compelling proof-of-concept for AB8939 as a treatment of AML. AB8939 administered alone or in combination with Ara-C was demonstrated to significantly increase survival and reduce tumor growth as compared with single agent Ara-C in relevant animal models of AML. A first in human, phase 1 trial evaluating AB8939 in AML patients unfit to receive intensive chemotherapy in second and third-line has been initiated. Disclosures Goubard: AB Science: Employment. Humbert: AB Science: Employment. Mansfield: AB Science: Employment, Patents & Royalties. Hermine: AB Science: Membership on an entity's Board of Directors or advisory committees. Dubreuil: AB Science: Employment, Membership on an entity's Board of Directors or advisory committees, Research Funding. AB8939 Study Group: AB Science: Consultancy, Employment.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []