Unveiling organic loading shock-resistant mechanism in a pilot-scale moving bed biofilm reactor-assisted dual-anaerobic-anoxic/oxic system for effective municipal wastewater treatment.

2021 
Abstract Microbial biomass and activity are frequently subjected to organic loading shock (OLS) from decentralized municipal wastewater. A hybrid moving bed biofilm reactor-assisted dual-anaerobic-anoxic/oxic system (D-A2MBBR) was established by integrating dual-anaerobic-anoxic/oxic with moving bed biofilm reactor to resist OLS for stable nutrients removal. The D-A2MBBR achieved 91.57% of chemical oxygen demand, 93.33% of ammonia-nitrogen, 80.20% of total nitrogen and 92.68% of total phosphorus removal, respectively, under the fluctuation of organic loading rate from 417.9 to 812.0 g COD m−3 d−1. The 16S rRNA gene sequencing revealed that Gemmobacter (7.28%) was identified as dominating anoxic denitrifying genus in oxic chamber, confirming the coexistence of aerobic and anaerobic/anoxic micro-environments. This circumstance boosted simultaneous nitrification-denitrification and phosphorus removal and the microbial community evolution inside the multilayer biocarrier-attached biofilms. In general, the D-A2MBBR was able to provide unique, cooperative and robust bacterial consortia to form a buffer against OLS, and ensuring effluent stability.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    50
    References
    0
    Citations
    NaN
    KQI
    []