Parameterized core functional dataflow graphs and their application to design and implementation of wireless communication systems

2013 
Due to the increased complexity of dynamics in modern DSP applications, dataflow-based design methodologies require significant enhancements in modeling and scheduling techniques to provide for efficient and flexible handling of dynamic behavior. In this paper, we address this problem through a new framework that is based on integrating two complementary modeling techniques, core functional dataflow (CFDF) and parameterized synchronous dataflow (PSDF). We apply, in a systematically integrated way, the structured mode-based dynamic dataflow modeling capability of CFDF together with the features of PSDF for dynamic parameter reconfiguration and quasi-static scheduling. We refer to this integrated methodology for mode- and dynamic-parameter-based modeling and scheduling as core functional parameterized synchronous dataflow (CF-PSDF). Through a wireless communication case study involving MIMO detection, we demonstrate the utility of design and implementation using CF-PSDF graphs. Experimental results on this case study demonstrate the efficiency and flexibility of our proposed new CF-PSDF based design methodology.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    16
    References
    6
    Citations
    NaN
    KQI
    []