Reorganization of the somatosensory pathway after subacute incomplete cervical cord injury

2019 
Abstract Objective The main purpose of the present study was to investigate the possible somatosensory-related brain functional reorganization after traumatic spinal cord injury (SCI). Methods Thirteen patients with subacute incomplete cervical cord injury (ICCI) and thirteen age- and sex-matched healthy controls (HCs) were recruited. Eleven patients and all the HCs underwent both sensory task-related brain functional scanning and whole brain structural scanning on a 3.0 Tesla MRI system, and two patients underwent only structural scanning; the process of structural scanning was completed on thirteen patients, while functional scanning was only applied to eleven patients. We performed sensory task-related functional MRI (fMRI) to investigate the functional changes in the brain. In addition, voxel-based morphometry (VBM) was applied to explore whether any sensory-related brain structural changes occur in the whole brain after SCI. Results Compared with HCs, ICCI patients exhibited decreased activation in the left postcentral gyrus (postCG), the brainstem (midbrain and right pons) and the right cerebellar lobules IV-VI. Moreover, a significant positive association was found between the activation in the left PostCG and the activation in both the brainstem and the right cerebellar lobules IV-VI. Additionally, the decrease in gray matter volume (GMV) was detected in the left superior parietal lobule (SPL). The decrease of white matter volume (WMV) was observed in the right temporal lobe, the right occipital lobe, and the right calcarine gyrus. No structural change in the primary sensory cortex (S1), the secondary somatosensory cortex (S2) or the thalamus was detected. Conclusion These functional and structural findings may demonstrate the existence of an alternative pathway in the impairment of somatosensory function after SCI, which consists of the ipsilateral cerebellum, the brainstem and the contralateral postCG. It provides a new theoretical basis for the mechanism of sensory-related brain alteration in SCI patients and the rehabilitation therapy based on this pathway in the future.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    64
    References
    6
    Citations
    NaN
    KQI
    []