FOCUS: DEVELOPMENT AND APPLICATION OF TOF AND TOF/TOF MS: RESEARCH ARTICLE How Constant Momentum Acceleration Decouples Energy and Space Focusing in Distance-of-Flight and Time-of-Flight Mass Spectrometries

2013 
Resolution in time-of-flight mass spectrometry (TOFMS) is ordinarily limited by the initial energy and space distributions within an instrument's acceleration region and by the length of the field-free flight zone. With gaseous ion sources, these distributions lead to systematic flight-time errors that cannot be simultaneously corrected with conventional static-field ion-focusing devices (i.e., an ion mirror). It is known that initial energy and space distributions produce non- linearly correlated errors in both ion velocity and exit time from the acceleration region. Here we reinvestigate an old acceleration technique, constant-momentum acceleration (CMA), to decouple the effects of initial energy and space distributions. In CMA, only initial ion energies (and not their positions) affect the velocity ions gain. Therefore, with CMA, the spatial distribution within the acceleration region can be manipulated without creating ion-velocity error. The velocity differences caused by a spread in initial ion energy can be corrected with an ion mirror. We discuss here the use of CMA and independent focusing of energy and space distributions for both distance-of-flight mass spectrometry (DOFMS) and TOFMS. Performance characteristics of our CMA-DOFMS and CMA-TOFMS instrument, fitted with a glow- discharge ionization source, are described. In CMA-DOFMS, resolving powers (FWHM) of greater than 1000 are achieved for atomic ions with a flight length of 285 mm. In CMA-TOFMS, only ions over a narrow range of m/z values can be energy-focused; however, the technique offers improved resolution for these focused ions, with resolving powers of greater than 2000 for a separation distance of 350 mm.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    55
    References
    0
    Citations
    NaN
    KQI
    []