Filtration behaviors and fouling mechanisms of ultrafiltration process with polyacrylamide flocculation for water treatment

2019 
Abstract This study aims to investigate thermodynamic mechanisms of filtration behaviors of ultrafiltration (UF) process with polyacrylamide (PAM) flocculation for surface water treatment, which has not been investigated previously. It was interestingly found that, filtration of durably mixed sodium alginate (SA) solution corresponded to an extraordinarily high specific filtration resistance (SFR) (3.28 × 1014 m·kg−1 without polyacrylamide addition) and a V-shaped profile of SFR characterized by a sharp fall followed by a correspondingly sharp rise along with the increase in PAM addition concentration. Experimental characterizations suggested that, membrane fouling was mainly caused by gel layer formation rather than pore clogging and cake/floc formation. Rather than chemical composition change, the changes of solution physicochemical properties (pH and zeta potential) and foulant morphology are associated with above-mentioned interesting filtration behaviors. Accordingly, thermodynamic mechanisms of the filtration behaviors were proposed. It was proposed that, the thermodynamics of polymeric network described by the Flory-Huggins lattice theory were responsible for the extraordinarily high SFR of SA gel layer. Low dosage of PAM addition decreased negative zeta potential and homogeneity of gel system, causing the reduced SFR. In contrast, further PAM addition increased the negative zeta potential and homogeneity of the gel system, and then increased the SFR of the gel layer. These results reasonably explained the V-shaped profile of SFR. This study provided significant insights into the effects of PAM addition on ultrafiltration behaviors.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    56
    References
    38
    Citations
    NaN
    KQI
    []