How Is Ultrasonic-Assisted CO2 EOR to Unlock Oils from Unconventional Reservoirs?

2021 
CO2 enhanced oil recovery (EOR) has proven its capability to explore unconventional tight oil reservoirs and the potential for geological carbon storage. Meanwhile, the extremely low permeability pores increase the difficulty of CO2 EOR and geological storage processing in the actual field. This paper initiates the ultrasonic-assisted approach to facilitate oil–gas miscibility development and finally contributes to excavating more tight oils. Firstly, the physical properties of crude oil with and without ultrasonic treatments were experimentally analyzed through gas chromatography (GC), Fourier-transform infrared spectroscopy (FTIR) and viscometer. Secondly, the oil–gas minimum miscibility pressures (MMPs) were measured from the slim-tube test and the miscibility developments with and without ultrasonic treatments were interpreted from the mixing-cell method. Thirdly, the nuclear-magnetic resonance (NMR) assisted coreflood tests were conducted to physically model the recovery process in porous media and directly obtain the recovery factor. Basically, the ultrasonic treatment (40 KHz and 200 W for 8 h) was found to substantially change the oil properties, with viscosity (at 60 °C) reduced from 4.1 to 2.8 mPa·s, contents of resin and asphaltene decreased from 27.94% and 6.03% to 14.2% and 3.79%, respectively. The FTIR spectrum showed that the unsaturated C-H bond, C-O bond and C≡C bond in macromolecules were broken from the ultrasonic, which caused the macromolecules (e.g., resin and asphaltenes) to be decomposed into smaller carbon-number molecules. Accordingly, the MMP was determined to be reduced from 15.8 to 14.9 MPa from the slim-tube test and the oil recovery factor increased by an additional 11.7%. This study reveals the mechanisms of ultrasonic-assisted CO2 miscible EOR in producing tight oils.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    57
    References
    0
    Citations
    NaN
    KQI
    []