DNA methylation and histone H1 cooperatively repress transposable elements and aberrant intragenic transcripts

2019 
DNA methylation and histone H1 mediate transcriptional silencing of genes and transposable elements, but how they interact is unclear. In plants and animals with mosaic genomic methylation, functionally mysterious methylation is also common within constitutively active housekeeping genes. Here we show that H1 is enriched in methylated sequences, including genes, of Arabidopsis thaliana, yet this enrichment is independent of DNA methylation. Loss of H1 disperses heterochromatin, globally alters nucleosome organization, and activates H1-bound genes, but only weakly de-represses transposable elements. However, H1 loss strongly activates transposable elements hypomethylated through mutation of DNA methyltransferase MET1. Loss of H1 also activates antisense transcripts within demethylated genes. Our results demonstrate that H1 and DNA methylation cooperatively maintain transcriptional homeostasis by silencing transposable elements and aberrant intragenic transcripts. Such functionality plausibly explains why DNA methylation, a well-known mutagen, has been maintained within coding sequences of crucial plant and animal genes.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    135
    References
    11
    Citations
    NaN
    KQI
    []