A diagnosis of groundwater quality from a semiarid region in Rajasthan, India

2016 
A diagnosis of the groundwater quality of 70 wells sampled during two climatic regimes (dry and raining seasons) from a semiarid area in Rajasthan, India, had been carried out using standard methods. Analysis of the results for various hydrochemical parameters wherein the geological units are alluvium, quartzite and granite gneisses showed that all the parameters did not fall within the World Health Organisation’s acceptable limits for irrigation and drinking water purposes. The order of major cations and anions obtained during the dry and raining seasons are Na+ ˃ Mg2+ ˃ Ca2+ ˃ K+ and Cl−˃ HCO3 − ˃ SO4 2−˃ CO3 −> F− ˃ NO3 −, respectively. A maximum value of nitrate of 491.6 mg/l has been examined and its contamination is due to discriminated highly impacted groundwater samples by agricultural activity and small-scale urbanization. Fluoride (F−) concentration is 6.50 mg/l as a maximum value, whereas values in about 26 % of the samples are more than the permissible limit (1.5 mg/l) for drinking water. The cumulative probability distributions of the selected ions show two individual intersection points with three diverse segments, considered as regional threshold values and highly impacted threshold values for differentiating the samples with the effects of geogenic, anthropogenic and saline water mixing. The first threshold values indicate the background hydrochemical constituents in the study area. The second threshold value of 732 mg/l for bicarbonate indicates that sandy aquifer is being dissolved during wet period, whereas NO3 − concentration of more than the initial threshold value (=75 mg/l) indicates discriminated highly impacted groundwater samples by agricultural activity and urbanization in dry season. Various parameters such as soluble sodium percentage (SSP), salinity (electrical conductivity (EC)), sodium adsorption ratio (SAR), residual sodium carbonate (RSC), Kelley’s ratio (KR), permeability index (PI), residual sodium bicarbonate (RSB) and magnesium absorption ratio (MAR) for the well samples show that, overall, 46 % of groundwater samples are not suitable for irrigation. Further, chloro-alkaline indices (CAIs) were used for distinguishing regional recharge and discharge zones whereas corrosivity ratio (CR) utilized for demarcating areas to use metallic pipes for groundwater supply. In general, groundwater quality is mainly controlled by the chemical weathering of rock-forming minerals. The information obtained represents a base for future work that will help to assess the groundwater condition for periodical monitoring and managing the groundwater from further degradation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    39
    References
    26
    Citations
    NaN
    KQI
    []