Tryptophan PET in pretreatment delineation of newly-diagnosed gliomas: MRI and histopathologic correlates

2013 
Pretreatment delineation of infiltrating glioma volume remains suboptimal with current neuroimaging techniques. Gadolinium-enhanced T1-weighted (T1-Gad) MR images often underestimate the true extent of the tumor, while T2-weighted images preferentially highlight peritumoral edema. Accumulation of α-[11C]methyl-l-tryptophan (AMT) on positron emission tomography (PET) has been shown in gliomas. To determine whether increased uptake on AMT–PET would detect tumor-infiltrated brain tissue outside the contrast-enhancing region and differentiate it from peritumoral vasogenic edema, volumes and spatial concordance of T1-Gad and T2 MRI abnormalities as well as AMT–PET abnormalities were analyzed in 28 patients with newly-diagnosed WHO grade II–IV gliomas. AMT-accumulating grade I meningiomas were used to define an AMT uptake cutoff threshold that detects the tumor but excludes peri-meningioma vasogenic edema. Tumor infiltration in AMT-accumulating areas was studied in stereotactically-resected specimens from patients with glioblastoma. In the 28 gliomas, mean AMT–PET-defined tumor volumes were greater than the contrast-enhancing volume, but smaller than T2 abnormalities. Volume of AMT-accumulating tissue outside MRI abnormalities increased with higher tumor proliferative index and was the largest in glioblastomas. Tumor infiltration was confirmed by histopathology from AMT-positive regions outside contrast-enhancing glioblastoma mass, while no or minimal tumor cells were found in AMT-negative specimens. These results demonstrate that increased AMT accumulation on PET detects glioma-infiltrated brain tissue extending beyond the contrast-enhanced tumor mass. While tryptophan uptake is low in peritumoral vasogenic edema, AMT–PET can detect tumor-infiltrated brain outside T2-lesions. Thus, AMT–PET may assist pretreatment delineation of tumor infiltration, particularly in high-grade gliomas.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    53
    References
    28
    Citations
    NaN
    KQI
    []