A “polar contact” tent for reduced perturbation and improved performance of NIF ignition capsules

2018 
In indirectly driven Inertial Confinement Fusion implosions conducted on the National Ignition Facility (NIF), the imploding capsule is supported in a laser-heated radiation enclosure (called a “hohlraum”) by a pair of very thin (∼15–45 nm) plastic films (referred to as a “tent”). Even though the thickness of these tents is a small fraction of that of the spherical capsule ablator (∼165 μm), both numerical simulations as well as experiments indicate that this capsule support mechanism results in a large areal density (ρR) perturbation on the capsule surface at the contact point where the tent departs from the capsule. As a result, during deceleration of the deuterium-tritium (DT) fuel layer, a jet of the dense ablator material penetrates and cools the fuel hot spot, significantly degrading the neutron yield (resulting in only ∼10%–20% of the unperturbed 1-D yield). In this article, we present a hypothesis and supporting design simulations of a new “polar contact” tent support system, which reduces the con...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    18
    References
    11
    Citations
    NaN
    KQI
    []