DeltaRNN: A Power-efficient Recurrent Neural Network Accelerator

2018 
Recurrent Neural Networks (RNNs) are widely used in speech recognition and natural language processing applications because of their capability to process temporal sequences. Because RNNs are fully connected, they require a large number of weight memory accesses, leading to high power consumption. Recent theory has shown that an RNN delta network update approach can reduce memory access and computes with negligible accuracy loss. This paper describes the implementation of this theoretical approach in a hardware accelerator called "DeltaRNN" (DRNN). The DRNN updates the output of a neuron only when the neuron»s activation changes by more than a delta threshold. It was implemented on a Xilinx Zynq-7100 FPGA. FPGA measurement results from a single-layer RNN of 256 Gated Recurrent Unit (GRU) neurons show that the DRNN achieves 1.2 TOp/s effective throughput and 164 GOp/s/W power efficiency. The delta update leads to a 5.7x speedup compared to a conventional RNN update because of the sparsity created by the DN algorithm and the zero-skipping ability of DRNN.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    32
    References
    89
    Citations
    NaN
    KQI
    []