Morphology and Electronic Properties of Semiconducting Polymer and Branched Polyethylene Blends

2019 
A new strategy for influencing the solid-state morphology of conjugated polymers was developed through physical blending with a low-molecular-weight branched polyethylene. This nontoxic and low-boiling-point additive was blended with a high-charge-mobility diketopyrrolopyrrole-based conjugated polymer, and a detailed investigation of the new blended materials was performed by various characterization tools, including X-ray diffraction, UV–vis spectroscopy, and atomic force microscopy. Interestingly, the branched additive was shown to reduce the crystallinity of the conjugated polymer while promoting aggregation and phase separation in the solid state. Upon thermal removal of the olefinic additive, the thin films maintained a lower crystallinity and aggregated morphology in comparison to a nonblended polymer. The semiconducting performance of the new branched polyethylene/conjugated polymer blends was also investigated in organic field-effect transistors, which showed a stable charge mobility of around 0.3...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    50
    References
    17
    Citations
    NaN
    KQI
    []