On the Bound of Energy Consumption in Cellular IoT Networks

2021 
Billions of sensors are expected to be connected to the Internet through the emerging Internet of Things (IoT) technologies. Many of these sensors will primarily be connected using wireless technologies powered using batteries as their sole energy source which makes it paramount to optimize their energy consumption. In this paper, we provide an analytic framework of the energy-consumption profile and its lower bound for an IoT end device formulated based on Shannon capacity. We extend the study to model the average energy-consumption performance based on the random geometric distribution of IoT gateways by utilizing tools from stochastic geometry and real measurements of interference in the ISM-band. Experimental data, interference measurements and Monte-Carlo simulations are presented to validate the plausibility of the proposed analytic framework, where results demonstrate that the current network infrastructures performance is bounded between two extreme geometric models. This study considers interference seen by a gateway regardless of its source.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    23
    References
    0
    Citations
    NaN
    KQI
    []