NFV-VIPP: Catching Internal Figures of Packet Processing for Accelerating Development and Operations of NFV-nodes

2019 
Server-based NFV-nodes have disparate internals, such as simultaneous deployment of Virtual Network Functions (VNFs) and layered software abstractions including a virtual switch. The traditional operations tailored for function-hardware-coupled devices cannot cope with the increase of related components as well as complicated packet forwarding paths inside. Besides, self-development of VNFs attracting Telcos is still highly complicated work, due to lack of exact troubleshooting of internal NFV-nodes caused by exclusive resource management by Data-Plane Development Kit (DPDK). OPNFV Barometer provides means of stats acquisition, but internal figures of packet processing are still unveiled. In this paper, we propose an integrated metrics collection framework (NFV-VIPP) specialized to NFV-nodes. NFV-VIPP provides seamless understandings of system components in a node, and reveals the inside by transparently exposing implementation-related metrics. NFV-VIPP can be incorporated into Barometer/collectd via RESTful APIs to reinforce system visibility, meaning that our framework bridges NFV-node internals to existing management frameworks. We explore NFV-node management using intra-VNF metrics obtained by NFVVIPP. Specifically, we prove that CPU-cycle consumption of inter-receive-polling is a driving force to estimate system load.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    2
    References
    3
    Citations
    NaN
    KQI
    []