Effect of Soil Water Content on the Removal of Volatile Chlorinated Hydrocarbons from Soil by Mechanical Soil Aeration

2015 
Mechanical soil aeration is an easy, effective, and low-cost soil remediation technology; in particular, it is suitable for large sites contaminated by volatile chlorinated hydrocarbons (VCHs). Mechanical soil aeration encourages the volatilization of soil contaminants, but soil moisture, which reduces the amount of open pores, may hinder this process. The present study examined the remediation of silty soil containing 1,2-dichloroethane (1,2-DCA), chloroform (TCM), trichloroethylene (TCE), and tetrachloroethylene (PCE) using mechanical soil aeration and evaluated the influence of soil water content on the efficiency of the process. For artificially contaminated soil, the following conclusions were reached: (i) moisture undermines the volatilization of contaminants. When the soil water content increased from 5% to 20%, the residual concentrations of 1,2-DCA, TCM, TCE, and PCE in the soil increased from 0.08, 0.10, 0.09, and 0.48 mg/kg to 1.43, 0.81, 1.16, and 1.43 mg/kg, respectively. The effective diffusion coefficients also decreased from 1.88×10-2, 1.43×10-2, 1.88×10-2, and 1.30×10-2 cm2/s to 1.71×10-6, 1.30×10-6, 1.71×10-6, and 1.18×10-6 cm2/s, respectively. (ii) Residual contaminants are related to the octanol-water partition coefficient. The soil-water distribution coefficient of PCE was highest among the hydrocarbons (3.72), and the residual contaminants were mainly adsorbed on soil particles. The soil-water distribution coefficient of DCA was lowest (0.42), and the residual contaminants were mainly dissolved in the soil water.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    19
    References
    3
    Citations
    NaN
    KQI
    []