Comparative Evaluation of Antimicrobial Effects of Er:YAG, Diode, and CO2 Lasers on Titanium Discs: An Experimental Study

2012 
Purpose This study examined carbon dioxide (CO 2 ; 10,600 nm), diode (808 nm), and erbium (Er):yttrium-aluminum-garnet (YAG; 2,940 nm) laser applications on Staphylococcus aureus contaminated, sandblasted, large-grit, acid-etched surface titanium discs and performed a comparative evaluation of the obtained bactericidal effects and the applicability of these effects in clinical practice. Materials and Methods This study was carried out in 5 main groups: Er:YAG laser in very short pulse (VSP) emission mode, Er:YAG laser in short pulse (SP) emission mode, diode laser with a 320-nm fiber optic diode laser with an R24-B handpiece, and CO 2 laser. After laser irradiation, dilutions were spread on sheep blood agar plates and, after an incubation period of 24 hours, colony-forming units were counted and compared with the control group, and the bactericidal activity was assessed in relation to the colony counts. Results The CO 2 laser eliminated 100% of the bacteria at 6 W, 20 Hz, and a 10-ms exposure time/pulse with a 10-second application period (0.8-mm spot size). The continuous-wave diode laser eliminated 97% of the bacteria at 1 W using a 10-second application with a 320-μm optic fiber, 100% of the bacteria were killed with a 1-W, 10-second continuous-wave application with an R14-B handpiece. The Er:YAG laser eliminated 100% of the bacteria at 90 mJ and 10 Hz using a 10-second application in a superpulse mode (300-ms exposure time/pulse). The Er:YAG laser also eliminated 99% to 100% of the bacteria in VSP mode at 90 mJ and 10 Hz with a 10-second application. Conclusions The results of this study show that a complete, or near complete, elimination of surface bacteria on titanium surfaces can be accomplished in vitro using a CO 2 , diode, or Er:YAG laser as long as appropriate parameters are used.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    53
    Citations
    NaN
    KQI
    []