Phosphatase and Tensin Homolog Is a Potential Target for Ovarian Cancer Sensitization to Cytotoxic Agents.

2016 
Objectives The phosphatase and tensin homolog (PTEN) tumor suppressor protein has been found to be inactivated or mutated in various human malignancies and to play a role in cisplatin and poly(ADP-ribose) polymerase inhibitor sensitivity. In this study, we assessed the association of PTEN loss with homologous recombination (HR) deficiency and increased chemosensitivity. Materials and Methods The PTEN knockdown models were created using MISSION shRNA lentiviral transduction particles in cell lines derived from normal ovarian surface epithelium and a mixed endometrioid/clear-cell carcinoma. Sensitivity to common therapeutics was assessed using sulforhodamine B assay. Twenty-eight unselected primary epithelial ovarian cancer cultures derived from ascitic fluid collected at the time of surgery and matched genomic DNA were assessed for PTEN mutations using polymerase chain reaction amplification and Sanger sequencing and for mRNA expression using quantitative reverse transcription-polymerase chain reaction; HR was determined using γH2AX/RAD51 assay. The Cancer Genome Atlas data were analyzed using cBioPortal. Results In the carcinoma cell line, the PTEN knockdown enhanced sensitivity to cisplatin, rucaparib, doxorubicin, camptothecin, paclitaxel, and irradiation. In the primary ovarian cancer cultures, 2 point mutations were found (1105T>TG, 25L>L in 6 cultures and 1508G>GA, 159R>R in 4 cultures). The PTEN mRNA expression varied over 40-fold between the cultures, but did not correlate with HR status or in vitro sensitivity to cisplatin or rucaparib. The Cancer Genome Atlas data showed a rate of 8% alteration in PTEN and a trend toward improved survival in PTEN-mutated cases. Conclusions These data indicate that although PTEN mutations in ovarian cancer are rare, PTEN inhibition results in therapeutic sensitization. Therefore, PTEN may be an important therapeutic target, in at least some cancers.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    4
    Citations
    NaN
    KQI
    []