Predicting prostate cancer specific-mortality with artificial intelligence-based Gleason grading

2021 
Gleason grading of prostate cancer is an important prognostic factor, but suffers from poor reproducibility, particularly among non-subspecialist pathologists. Although artificial intelligence (A.I.) tools have demonstrated Gleason grading on-par with expert pathologists, it remains an open question whether and to what extent A.I. grading translates to better prognostication. In this study, we developed a system to predict prostate cancer-specific mortality via A.I.-based Gleason grading and subsequently evaluated its ability to risk-stratify patients on an independent retrospective cohort of 2807 prostatectomy cases from a single European center with 5–25 years of follow-up (median: 13, interquartile range 9–17). Here, we show that the A.I.’s risk scores produced a C-index of 0.84 (95% CI 0.80–0.87) for prostate cancer-specific mortality. Upon discretizing these risk scores into risk groups analogous to pathologist Grade Groups (GG), the A.I. has a C-index of 0.82 (95% CI 0.78–0.85). On the subset of cases with a GG provided in the original pathology report (n = 1517), the A.I.’s C-indices are 0.87 and 0.85 for continuous and discrete grading, respectively, compared to 0.79 (95% CI 0.71–0.86) for GG obtained from the reports. These represent improvements of 0.08 (95% CI 0.01–0.15) and 0.07 (95% CI 0.00–0.14), respectively. Our results suggest that A.I.-based Gleason grading can lead to effective risk stratification, and warrants further evaluation for improving disease management. Gleason grading is the process by which pathologists assess the morphology of prostate tumors. The assigned Grade Group tells us about the likely clinical course of people with prostate cancer and helps doctors to make decisions on treatment. The process is complex and subjective, with frequent disagreement amongst pathologists. In this study, we develop and evaluate an approach to Gleason grading based on artificial intelligence, rather than pathologists’ assessment, to predict risk of dying of prostate cancer. Looking back at tumors and data from 2,807 people diagnosed with prostate cancer, we find that our approach is better at predicting outcomes compared to grading by pathologists alone. These findings suggest that artificial intelligence might help doctors to accurately determine the probable clinical course of people with prostate cancer, which, in turn, will guide treatment. Wulczyn et al. utilise a deep learning-based Gleason grading model to predict prostate cancer-specific mortality in a retrospective cohort of radical prostatectomy patients. Their model enables improved risk stratification compared to pathologists’ grading and demonstrates the potential for computational pathology in the management of prostate cancer.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    44
    References
    3
    Citations
    NaN
    KQI
    []