Molecular epidemiology of M. tuberculosis in Ethiopia: A systematic review and meta-analysis

2019 
Abstract Nationally representative molecular epidemiology information about Mycobacterium tuberculosis (M. tuberculosis, Mtb) is lacking for Ethiopia. This review summarizes available literature on the genomic diversity, geo-spatial distribution and transmission patterns of M. tuberculosis lineages (L) and sublineages in Ethiopia. Spoligotyping and Mycobacterial Interspersed Repetitive Units-Variable Number Tandem Repeats (MIRU-VNTR) based articles were identified from MEDLINE via PubMed and Scopus. The last date of article search was 12th February 2019. Articles were selected following the PRISMA flow diagram. The proportion of (sub)lineages was summarized at national level and further disaggregated by region. Clustering and recent transmission index (RTI) were determined using Matan command and random effect meta-analysis model. The meta-analysis was computed using Stata 14 (Stata Corp. College Station, TX, USA). Among a total of 4371 clinical isolates, 99.5% were Mtb and 0.5% were M. bovis. Proportionally, L4, L3, L1 and L7 made up 62.3%, 21.7%, 7.9% and 3.3% of the total respectively. Among sublineages, L4.2. ETH/SIT149, L4.10/SIT53, L3. ETH1/SIT25 and L4.6/SIT37 were the leading clustered isolates accounting for 14.4%, 9.7%, 7.2% and 5.5%, respectively. Based on MIRU-VNTR, the rate of clustering was 41% and the secondary case rate from a single source case was estimated at 29%. Clustering and recent transmission index was higher in eastern and southwestern Ethiopia compared with northwest Ethiopia. High level of genetic diversity with a high rate of clustering was noted which collectively mirrored the phenomena of micro-epidemics and super-spreading. The largest set of clustered strains deserves special attention and further characterization using whole genome sequencing (WGS) to better understand the evolution, genomic diversity and transmission dynamics of Mtb.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    99
    References
    6
    Citations
    NaN
    KQI
    []