Compact layer influence on hysteresis effect in organic–inorganic hybrid perovskite solar cells

2016 
Abstract Organic–inorganic hybrid perovskite solar cells have attracted great attention due to their high power conversion efficiency and low cost. However, an anomalous hysteresis effect exists in the perovskite solar cells, especially with TiO 2 as the n-type electron extraction layer. In this communication, we prepare two kinds of TiO 2 compact layers using Atomic Layer Deposition (ALD) and Spin-Coating (SC) methods and compare their influences on the hysteresis effect. By efficiency comparison and AC impedance spectroscopy study, we find that the thickness and morphology of compact layer have a significant influence on the hysteresis effect. Compared to the SC approach, the ALD prepared compact layer is ultra-thin with uniform morphology and shows small interfacial capacitance and large recombination resistance, meaning reduced interfacial charge accumulation and accelerated electron transport, which would relieve the hysteresis effect.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    17
    Citations
    NaN
    KQI
    []