Analysis Factors That Influence Escalator-Related Injuries in Metro Stations Based on Bayesian Networks: A Case Study in China

2020 
Escalator-related injuries have become an important issue in daily metro operation. To reduce the probability and severity of escalator-related injuries, this study conducted a probability and severity analysis of escalator-related injuries by using a Bayesian network to identify the risk factors that affect the escalator safety in metro stations. The Bayesian network structure was constructed based on expert knowledge and Dempster–Shafer evidence theory, and further modified based on conditional-independence test. Then, 950 escalator-related injuries were used to estimate the posterior probabilities of the Bayesian network with expectation–maximization (EM) algorithm. The results of probability analysis indicate that the most influential factor in four passenger behaviors is failing to stand firm (p = 0.48), followed by carrying out other tasks (p = 0.32), not holding the handrail (p = 0.23), and another passenger’s movement (p = 0.20). Women (p = 0.64) and elderly people (aged 66 years and above, p = 0.48) are more likely to be involved in escalator-related injuries. Riding an escalator with company (p = 0.63) has a relatively high likelihood of resulting in escalator-related injuries. The results from the severity analysis show that head and neck injuries seem to be more serious and are more likely to require an ambulance for treatment. Passengers who suffer from entrapment injury tend to claim for compensation. Severe injuries, as expected, significantly increase the probability of a claim for compensation. These findings could provide valuable references for metro operation corporations to understand the characteristics of escalator-related injuries and develop effective injury prevention measures.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    29
    References
    6
    Citations
    NaN
    KQI
    []