Laser tongue debridement for oral malodor—A novel approach to halitosis

2020 
Abstract Study objective Malodor is a multifactorial condition with oral pathology representing the main culprit and the tongue being the first to second contributor to the malodor. Bacterial load can represent a quantifiable measure regardless of the original pathology. We hypothesize that reduction in malodor can be represented by tongue changes both in appearance, bacterial and biofilm load reduction (measured by CFU and volatile gases measurement), organoleptic measurement and subjective improvement. Methods A randomized controlled prospective study under IRB approval. Diagnostic criteria for enrollment and follow up were organoleptic test by 2 judges, Halimeter reading, tongue colors changes HALT questionnaire and direct aerobic and anaerobic tongue cultures measured by CFU. Patients were treated with laser tongue debridement (LTD) with an Er,Cr:YSGG solid state laser has been shown to be effective in biofilm reduction. Results 54 patients recruited with 35 available for follow up. Improvement was observed on all objective and QOL subjective parameters. Treatment was tolerated well with minimal discomfort. Conclusions The tongue is proven to be a major contributor to oral malodor and must be addressed in treatment protocol. LTD significantly reduces malodor by subjective and objective criteria. While impossible to determine whether the tongue serves as a bacterial reservoir or is the origin for oral bacteria it is clear that LTD improves oral hygiene and reduces malodor. LTD is safe and easy to perform. We encourage LTD to be a crucial part of any oral malodor treatment protocol. Trial registration: clinical trials, NCT04120948. Registered 25 September 2019 - Retrospectively registered, https://register.clinicaltrials.gov/prs/app/action/SelectProtocol?sid=S00098SX&selectaction=Edit&uid=U0000W0Y&ts=51&cx=-elnx7e
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    10
    References
    2
    Citations
    NaN
    KQI
    []