Thin Composite Carbon Molecular Sieve Membranes from a Polymer of Intrinsic Microporosity Precursor

2019 
Ultra-thin composite carbon molecular sieve (CMS) membranes were fabricated on well-defined inorganic alumina substrates using a polymer of intrinsic microporosity (PIM) as a precursor. Details of the pyrolysis-related structural development were elucidated using focused-beam, interference-enhanced spectroscopic ellipsometry (both in the UV–vis and IR range), which allowed accurate determination of the film thickness, optical properties as well as following the chemical transformations. The pyrolysis-induced collapse of thin and bulk PIM-derived CMS membranes was compared with CMS made from a well-known non-PIM precursor 6FDA–DABA. Significant differences between the PIM and non-PIM precursors were discovered and explained by a much larger possible volume contraction in the PIM. In spite of the differences, surprisingly, the gas separation properties did not fundamentally differ. The high-temperature collapse of the initially amorphous and isotropic precursor structure was accompanied by a significant mol...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    59
    References
    20
    Citations
    NaN
    KQI
    []