Rice Leaf Lateral Asymmetry in the Relationship between SPAD and Area-Based Nitrogen Concentration

2017 
Rice leaves display lateral asymmetry around the midrib, and the narrow side exhibits higher leaf area-based nitrogen concentration (Na) and soil plant analysis development (SPAD) values than the wider side. However, the difference in the relationship between the SPAD of each side and Na of the corresponding lateral half, and the optimal position along the leaf blade for SPAD measurements are not known. In this study, the relationship between SPAD and Na of both sides of the top three leaves was determined with 17 rice varieties grown over three growing seasons in two locations. The relationship between SPAD and Na displayed leaf lateral asymmetry, in which the wide side reflected a higher coefficient of determination than the narrow side. The ability to estimate Na of the whole leaf was slightly improved by averaging SPAD values across the leaf sides and measured points for the top two leaves. Apparently, it was more accurate and easier to measure SPAD readings on the wide side than the narrow side of rice leaf blade with respect to estimating plant N status. Due to the relatively poor relationship of the upper leaf, and the structural limit for SPAD measurements of the base, this study suggests that the most suitable and representative position for SPAD meter measurement on the leaf blade of rice is the lower-middle part from the leaf apex on the wide side.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    41
    References
    2
    Citations
    NaN
    KQI
    []