The supersymmetry method for chiral random matrix theory with arbitrary rotation-invariant weights

2014 
In the past few years, the supersymmetry method has been generalized to real symmetric, Hermitian, and Hermitian self-dual random matrices drawn from ensembles invariant under the orthogonal, unitary, and unitary symplectic groups, respectively. We extend this supersymmetry approach to chiral random matrix theory invariant under the three chiral unitary groups in a unifying way. Thereby we generalize a projection formula providing a direct link and, hence, a 'short cut' between the probability density in ordinary space and that in superspace. We emphasize that this point was one of the main problems and shortcomings of the supersymmetry method, since only implicit dualities between ordinary space and superspace were known before. To provide examples, we apply this approach to the calculation of the supersymmetric analogue of a Lorentzian (Cauchy) ensemble and an ensemble with a quartic potential. Moreover, we consider the partially quenched partition function of the three chiral Gaussian ensembles corresponding to four-dimensional continuum quantum chromodynamics. We identify a natural splitting of the chiral Lagrangian in its lowest order into a part for the physical mesons and a part associated with source terms generating the observables, e.g. the level density of the Dirac operator.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    88
    References
    14
    Citations
    NaN
    KQI
    []