Brain-Targeted Dual Site-Selective Functionalized Poly(β-Amino Esters) Delivery Platform for Nerve Regeneration.

2021 
Brain injuries are devastating central nervous system diseases, resulting in cognitive, motor, and sensory dysfunctions. However, clinical therapeutic options are still limited for brain injuries, indicating an urgent need to investigate new therapies. Furthermore, the efficient delivery of therapeutics across the blood-brain barrier (BBB) to the brain is a serious problem. In this study, a facile strategy of dual site-selective functionalized (DSSF) poly(β-amino esters) was developed using bio-orthogonal chemistry for promoting brain nerve regeneration. Fluorescence colocalization studies demonstrated that these proton-sponge DSSF poly(β-amino esters) targeted mitochondria through electrostatic interactions. More importantly, this delivery system could effectively accumulate in the injured brain sites and accelerate the recovery of the injured brain. Finally, this DSSF poly(β-amino esters) platform may provide a new methodology for the construction of dual regioselective carriers in protein/peptide delivery and tissue engineering.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    54
    References
    3
    Citations
    NaN
    KQI
    []