Porous platinum nanoparticles as a high-Z and oxygen generating nanozyme for enhanced radiotherapy in vivo

2019 
Abstract Radiotherapy (RT), along with surgery and chemotherapy, is a major modality of cancer therapy. Nevertheless, insufficient deposition of radiation energy in tumors and hypoxia-associated radioresistance remain the greatest challenges in RT. Here, we propose porous platinum nanoparticles as a new nanomedicine platform for solving these two problems at the same time using a single agent. Because of the combined advantages of a high-Z element and oxygen generation capability, porous platinum nanoparticles can significantly increase radiation-induced DNA damage, ROS stress, and cell cycle arrest by effectively depositing X-ray radiation energy within the cancer cells. Further, porous platinum nanoparticles increase tumor oxygenation by converting endogenic H 2 O 2 to O 2 , thus greatly enhancing RT with no apparent in vivo toxicity to animals. This study presents a new nanomedicine strategy based on the use of porous high-Z metal nanoparticles with oxygen generation function for the synergistic enhancement of RT in cancer treatment.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    73
    Citations
    NaN
    KQI
    []