Treating molecules in arbitrary spin states using the parametric two-electron reduced-density-matrix method

2012 
Minimizing the electronic energy with respect to a parameterized two-electron reduced density matrix (2-RDM) is known as a parametric variational 2-RDM method. The parametric 2-RDM method with the M 2-RDM parametrization [D. A. Mazziotti, Phys. Rev. Lett. 101, 253002 (2008)]10.1103/PhysRevLett.101.253002 is extended to treat molecules in arbitrary spin states. Like its singlet counterpart, the M parametric 2-RDM method for arbitrary spin states is derived using approximate N-representability conditions, which allow it to capture more correlation energy than coupled cluster with single and double excitations at a lower computational cost. We present energies, optimized bond lengths, potential energy curves, and occupation numbers for a set of molecules in a variety of spin states using the M and K parametric 2-RDM methods as well as several wavefunction methods. We show that the M parametric 2-RDM method can describe bond breaking of open-shell molecules like triplet B2 and singlet and triplet OH + even in...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    39
    References
    6
    Citations
    NaN
    KQI
    []