Interplanetary Trajectory Design for NASA's Common Probe Study

2018 
The Galileo Probe, Pioneer-Venus probes, and SPRITE concept all share a number of common characteristics. They all follow a similar entry and descent sequence, using an aeroshell to protect against entry environments, and parachutes to aid in extrusion and descent speed control of the descent vehicle containing the science instruments. The descent vehicles all contained similar instruments (e.g. mass spectrometers and atmosphere structure sensors), and data was either relayed back to a carrier spacecraft (Galileo Probe, SPRITE) or transmitted direct to Earth (Pioneer-Venus). Based on these similar characteristics, NASA initiated a study to investigate a “common probe' that might be designed to perform similar science in a variety of planetary environments. This concept would leverage a common aeroshell design, and descent vehicle designs that could be made as similar as possible (the primary exception being that Venus will require a pressure vessel due to the extreme pressures and temperatures seen in the lower portion of the descent). To support the Common Probe study, GSFC and JPL performed a series of interplanetary trajectory analyses to help develop the mission designs for Venus, Jupiter, Saturn, Uranus, and Neptune. Primary considerations in the trajectory modeling included: a maximum of 12-year time of flight (for outer planet destinations), generation of both steep and shallow entry trajectories to each destination (where steep and shallow resulted in approximately 150 g and 50 g peak deceleration during entry at each location), and consideration of the data relay. Gravity assists and trajectories with low delta-V requirements (typically much less than 500 m/s) were also incorporated into the design process to enable launch on existing vehicles such as the Atlas V.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []