Planetesimals in Rarefied Gas: Wind Erosion in Slip Flow

2020 
A planetesimal moves through the gas of its protoplanetary disc where it experiences a head wind. Though the ambient pressure is low, this wind can erode and ultimately destroy the planetesimal if the flow is strong enough. For the first time, we observe wind erosion in ground based and microgravity experiments at pressures relevant in protoplanetary discs, i.e. down to $10^{-1}\, \rm mbar$. We find that the required shear stress for erosion depends on the Knudsen number related to the grains at the surface. The critical shear stress to initiate erosion increases as particles become comparable to or larger than the mean free path of the gas molecules. This makes pebble pile planetesimals more stable at lower pressure. However, it does not save them as the experiments also show that the critical shear stress to initiate erosion is very low for sub-millimetre sized grains.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    60
    References
    11
    Citations
    NaN
    KQI
    []