Structured Probabilistic Pruning for Deep Convolutional Neural Network Acceleration

2017 
Although deep Convolutional Neural Network (CNN) has shown better performance in various computer vision tasks, its application is restricted by a significant increase in storage and computation. Among CNN simplification techniques, parameter pruning is a promising approach which aims at reducing the number of weights of various layers without intensively reducing the original accuracy. In this paper, we propose a novel progressive parameter pruning method, named Structured Probabilistic Pruning (SPP), which effectively prunes weights of convolutional layers in a probabilistic manner. Specifically, unlike existing deterministic pruning approaches, where unimportant weights are permanently eliminated, SPP introduces a pruning probability for each weight, and pruning is guided by sampling from the pruning probabilities. A mechanism is designed to increase and decrease pruning probabilities based on importance criteria for the training process. Experiments show that, with 4x speedup, SPP can accelerate AlexNet with only 0.3% loss of top-5 accuracy and VGG-16 with 0.8% loss of top-5 accuracy in ImageNet classification. Moreover, SPP can be directly applied to accelerate multi-branch CNN networks, such as ResNet, without specific adaptations. Our 2x speedup ResNet-50 only suffers 0.8% loss of top-5 accuracy on ImageNet. We further prove the effectiveness of our method on transfer learning task on Flower-102 dataset with AlexNet.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    47
    References
    49
    Citations
    NaN
    KQI
    []