Abstract PD4-08: A microenvironment secretome screen reveals FGF2 as a mediator of resistance to anti-estrogens and PI3K/mTOR pathway inhibitors in ER+ breast cancer

2018 
Despite the clinical success of anti-estrogen therapies, phosphatidylinositol 3-kinase inhibitors (PI3Ki), and mechanistic target of rapamycin complex I inhibitors (mTORC1i) for the treatment of patients with ER+ breast cancer, disease recurrence and progression are common. We found that a tumor transcriptional profile reflecting high stromal fibroblast content was associated with poor outcome in 3 cohorts of patients with ER+ breast cancer. We hypothesized that individual factors in the tumor microenvironment (TME) significantly contribute to drug resistance. To test this hypothesis, we screened 297 recombinant secreted proteins for ability to confer resistance to the anti-estrogen fulvestrant in MCF-7 and T47D ER+ breast cancer cells. Screen results were validated, and expansion screening included the anti-estrogen tamoxifen, the PI3Ki pictilisib, and the mTORC1i everolimus in 4 cell lines. To identify hits are most likely to be relevant to ER+ breast cancer, a bioinformatics filter was developed utilizing gene and protein expression in human tissues relevant to the TMEs of ER+ breast cancer. After filtering, the top screening hit was fibroblast growth factor 2 (FGF2), which confers resistance to anti-estrogens, PI3Ki, and mTORC1i, and is highly expressed in tissues and cell types associated with ER+ breast cancer. FGF2 did not rescue cells from the CDK4/6i palbociclib or the DNA-damaging agent doxorubicin, demonstrating pathway selectivity in the rescue phenotype. FGF2 rescued cells from anti-estrogen-, PI3Ki-, and mTORC1i-induced apoptosis and cell cycle arrest via activation of FGFR signaling through FRS2a, MEK1/2, ERK1/2, and downstream upregulation of cyclin D1 and degradation of Bim. FGF2-mediated anti-cancer effects were abrogated by co-treatment with the FGF2-neutralizing antibody GAL-F2, the pan-FGFR inhibitor PD-173074, the MEK inhibitor trametinib, or palbociclib. Cell cycle- and apoptosis-specific effects of FGF2 were abrogated by RNAi targeting cyclin D1 and Bim, respectively. We generated a transcriptional signature of FGF2 response by RNA-seq of fulvestrant-treated MCF-7 and T47D cells treated +/- FGF2. In 3 cohorts of patients with ER+ breast cancer, a signature of FGF2 signaling was significantly associated with poor prognosis and predictive of anti-estrogen resistance, including in a multivariate analysis including age, tumor grade, tumor stage, and FGFR amplification status. Finally, the therapeutic potential of targeting FGF2 was confirmed in 3 mouse models of ER+ breast cancer: 1) FGF2 rescue MCF-7 xenografts from fulvestrant; 2) GAL-F2 synergized with fulvestrant to suppress growth of 59-2-HI murine mammary adenocarcinomas that recruit FGF2-secreting stroma; 3) GAL-F2 synergized with fulvestrant to induce regression of HCI-003 patient-derived xenografts. Therapeutic effects coincided with increased tumor cell apoptosis and decreased proliferation, but not changes in tumor vasculature. These findings warrant consideration of FGF2 as a novel therapeutic target in ER+ breast cancer. Citation Format: Shee K, Hinds JW, Yang W, Hampsch RA, Patel K, Varn FS, Cheng C, Jenkins NP, Kettenbach AN, Demidenko E, Owens P, Lanari C, Faber AC, Golub TR, Straussman R, Miller TW. A microenvironment secretome screen reveals FGF2 as a mediator of resistance to anti-estrogens and PI3K/mTOR pathway inhibitors in ER+ breast cancer [abstract]. In: Proceedings of the 2017 San Antonio Breast Cancer Symposium; 2017 Dec 5-9; San Antonio, TX. Philadelphia (PA): AACR; Cancer Res 2018;78(4 Suppl):Abstract nr PD4-08.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    2
    Citations
    NaN
    KQI
    []