Preparation and flame retardancy of epoxy resin phosphoric acid modified poly-acrylate resin

2019 
Purpose The flammability of poly-acrylate (PA) resin is a major disadvantage in applications that require flame resistance. It has been reported that a flame-retardant PA resin could be prepared by covalent incorporate phosphorous containing monomer with vinyl group via free radical polymerization, and the prepared modified PA resin is expected to exhibit better flame resistance than those by an additive approach. However, the phosphorus-containing monomers reported previously are made from expensive or toxic materials, and the production procedure is tedious and under harsh reaction conditions, which are not feasible for industrial application. Therefore, the purpose of this paper is the preparation of flame-retardant PA resin modified by epoxy resin phosphorous acid (EPPA) and the study of its flame retardancy. Design/methodology/approach EPPA is first prepared by epoxy resin E-51 and phosphorous acid and then used to prepare phosphorous containing PA resin by free radical polymerization. The flame retardancy of the prepared EPPA-modified PA (EPPA-PA) resin is studied. Findings The results show that EPPA can graft onto the PA polymer chain by free radical polymerization, the flame retardancy of the EPPA-PA resin increases as the EPPA content increasing. The flame retardancy of EPPA-PA resin prepared reaches 27.8% and can pass the V-0 rating in the UL-94 test when EPPA content is 30.0%. SEM and EDS results indicate that phosphorous element in the EPPA-PA resin shows a condensed-phase flame retardant effect. Research limitations/implications The grafting degree of EPPA cannot be accurately tested. Practical implications It is expected that the large-scale production of this epoxy resin phosphoric acid modified PA resin will enable practical industrial applications. Originality/value This method for synthesis of epoxy resin phosphoric acid modified PA resin is newfrangled.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    14
    References
    0
    Citations
    NaN
    KQI
    []