Multifrequency simultaneous bioimpedance measurements using multitone burst signals for dynamic tissue characterization

2010 
In this paper we present the keypoints to perform multifrequency simultaneous bioimpedance measurements using multitone signals. Concerning the frequency distribution, tones are spread over 1kHz to 1MHz range using a custom frequency distribution which we called Bilateral Quasi Logarithmic (BQL). BQL concentrates a higher number of tones around the impedance relaxation and contains a frequency plan algorithm. It minimizes the intermodulation effects due to non-linearities behaviours of the DUT and electrodes by slightly shifting the original tones in order to guarantee a guard bandwith. Regarding the multitone phase distribution, a Genetic Algorithm (GA) has been developed to minimize multitone Crest Factor (CF). This allow us to maximize the resultant Signal to Noise Ratio (SNR) of the acquisition system. This paper also presents the relation between parameters such as sampling frequency and ADC bits with the SNR and the effect in the overall amplitude and phase error when using multitone signals as excitation waveforms. Finally, we present characterization results from a measurement system based on a modular PXI architecture.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []