Prediction of Renal Allograft Acute Rejection Using a Novel Non-Invasive Model Based on Acoustic Radiation Force Impulse

2016 
Abstract Point shear wave elastography based on acoustic radiation force impulse is a novel technology used to quantify tissue stiffness by measuring shear wave speed. A total of 115 kidney transplantation recipients were consecutively enrolled in this prospective study. The patients were subdivided into two groups using 1 mo post-transplantation as the cutoff time for determining the development of acute rejection (AR). Shear wave speed was significantly higher in the AR group than in the non-AR group. We created a model called SEV, comprising shear wave speed, estimated glomerular filtration rate and kidney volume change, that could successfully discriminate patients with or without AR. The area under the receiver operating characteristic curve of SEV was 0.89, which was higher than values for other variables; it was even better in patients within 1 mo post-transplantation (0.954), but was lower than the estimated glomerular filtration rate in patients after 1 mo post-transplantation. Therefore, the SEV model may predict AR after renal transplantation with a high degree of accuracy, and it may be more useful in the early post-operative stage after renal transplantation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    10
    Citations
    NaN
    KQI
    []