High performance mesoporous zirconium phosphate for dehydration of xylose to furfural in aqueous-phase

2013 
The conversion of sugars to chemicals in aqueous-phase is especially important for the utilization of biomass. In current work, zirconium phosphate obtained by hydrothermal methods using organic amines as templates has been examined as a solid catalyst for the dehydration reaction of xylose to furfural in aqueous-phase. The use of dodecylamine and hexadecylamine in the synthesis process results in mesoporous zirconium phosphate with uniform pore width of ∼2 nm and in morphology of nanoaggregates, which is characterized by powder X-ray diffraction, N2 isothermal sorption, NH3 temperature-programmed desorption, FT-IR, and 31P MAS NMR spectroscopy. When used as a catalyst for xylose dehydration to furfural in aqueous-phase, the mesoporous zirconium phosphate presents excellent catalytic performance with high conversions up to 96% and high furfural yields up to 52% in a short time of reaction. Moreover, the catalyst is easily regenerated by thermal treatment in air and shows quite stable activity. The open structure with numerous active sites of the Bronsted/Lewis acid sites is responsible for the high catalytic efficiency of mesoporous zirconium phosphate.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    44
    References
    34
    Citations
    NaN
    KQI
    []