Melatonin, the advance-guard in oxidative myocardial assault instigated by exercise stress: a physiological and biochemical insight

2020 
Exercise conducted at an optimum training load is usually beneficial for the overall health of an individual. However, an unaccustomed intense exercise carried out by untrained individuals or elite athletes during over-training and/or competition-related stress often bear inevitable cardiovascular risks. Although many alterations occurring in the cardiovascular system during exercise are the results of training adaptations, sudden cardiovascular deaths reported in competitive athletes is a matter of grave concern. Several oxidative biomarkers that depict the underlying structural and functional impairment of the myocardial tissue have been identified in the individuals subjected to extensive exercise. The exercise-mediated cardiomyopathy is free radical related and also associated with pro-inflammatory response. In this review we will highlight the possible role of melatonin in obviating irrevocable oxidative cardiovascular injury triggered by extensive exercise stress. Melatonin effectively reduces exercise-induced lipid peroxidation, restores natural cellular antioxidant pool and supresses the innate immune cascade reaction that, otherwise, jeopardize cardiovascular integrity. Melatonin blocks the IKK/IκB/NFκB signaling as well as suppress iNOS and COX-2 mediated inflammation in cardiac tissue. In addition, melatonin reduces blood lactate accumulation and accelerates glucose utilization, thereby, promoting energy metabolism in athletes during their training and competition. Physical exertion associated overheating and the resultant sympathetic outflow impede cardiovascular homeostasis. Melatonin not only attenuates the sympathomedullary stimulation but also protects the cardiac cells from the cytotoxic effect of catecholamines. The available information regarding the efficacy of melatonin in amelioration of exercise-driven oxidative insult in cardiac tissue has been discussed and summarized.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []