Gate-controlled persistent spin helix state in (In,Ga)As quantum wells

2012 
In layered semiconductors with spin-orbit interaction (SOI) a persistent spin helix (PSH) state with suppressed spin relaxation is expected if the strengths of the Rashba and Dresselhaus SOI terms, α and β, are equal. Here we demonstrate gate control and detection of the PSH in two-dimensional electron systems with strong SOI including terms cubic in momentum. We consider strain-free InGaAs/InAlAs quantum wells and first determine a ratio α/β≃1 for nongated structures by measuring the spin-galvanic and circular photogalvanic effects. Upon gate tuning the Rashba SOI strength in a complementary magnetotransport experiment, we monitor the complete crossover from weak antilocalization via weak localization to weak antilocalization, where the emergence of weak localization reflects a PSH-type state. A corresponding numerical analysis reveals that such a PSH-type state indeed prevails even in presence of strong cubic SOI, however no longer at α=β.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    88
    Citations
    NaN
    KQI
    []