A review on electrochemical synthesized copper-based catalysts for electrochemical reduction of CO2 to C2+ products

2021 
Abstract In recent decades, catalytic reduction of CO2 is a hot topic in the research field of electrocatalysis. Copper is the only metal catalyst capable of producing multiple carbon (C2+) products in electrocatalytic CO2 reduction (ECR), however, there are still many challenges such as low selectivity, serious hydrogen evolution (HER) and poor stability. So far, various synthesis methods have been developed for Cu-based catalysts. Compared with ordinary chemical synthesis, electrochemical method has the advantages of simple process, controllable conditions, good safety and eco-friendly. In this review, the recent progress in synthesizing different types of Cu-based catalysts by means of the electrochemical method are comprehensively reviewed. The engineering strategies and the effects of the key preparation conditions on the catalytic performance of CO2 electroreduction for C2+ products are discussed in details. Besides, copper-based catalysts synthesized by electrochemical methods combined with the ordinary methods (wet chemical methods, plasma activated methods and other methods) were also outlined. Finally, the development potential of electrochemical synthesis for Cu-based catalysts are recommended, which provides a direction for the future development of Cu-based catalysts with low cost and high ECR performance.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    115
    References
    16
    Citations
    NaN
    KQI
    []