Stimuli-responsive DNA origami nanodevices and their biological applications

2021 
DNA origami nanotechnology has provided predictable static nanoarchitectures and dynamic nanodevices with rationally designed geometries, precise spatial addressability, and marked biocompatibility. Multiple functional elements, such as peptides, aptamers, nanoparticles, fluorescence probes, and proteins, etc. can be easily integrated into DNA origami templates with nanoscale precision, leading to a variety of promising applications. Triggered by chemical/physical stimuli, dynamic DNA origami nanodevices can switch between defined conformations or translocate autonomously, providing powerful tools for intelligent biosensing and drug delivery. In this minireview, we summarize the recent progress of dynamic DNA origami nanodevices with desired reconfigurability and feasibility to perform multiple biological tasks. We introduce varieties of DNA nanodevices that can be controlled by different molecular triggers and external stimuli. Subsequently, we highlight the recent advances in employing DNA nanodevices as biosensors and drug delivery vehicles. At last, future possibilities and perspectives are also discussed.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    86
    References
    0
    Citations
    NaN
    KQI
    []