The effect of different process configurations on the performance and cost of potassium taurate solvent absorption

2019 
Abstract The main method of capture of CO 2 in industry is the use of solvents for CO 2 absorption in post-combustion capture and the benchmark solvent is monoethanolamine (MEA). However, it presents a few disadvantages such as having a high energy requirement while also being corrosive and toxic. Potassium taurate (K-Tau) is a solvent with the potential to replace MEA because it has similar reaction rates, high cyclic loading, degradation resistant and most importantly, low energy requirement. The objective of this study was to compare and evaluate the effect of different process configurations on the reboiler duty for the precipitating potassium solvent absorption process. Utilising a baseline potassium taurate process, different process configurations were developed in Aspen Plus. These include a cold rich bypass (CRB) of the rich solvent stream to the stripper and a solid-liquid separator. The results show that the modified configurations reduce the reboiler duty of the potassium taurate process by approximately 12% through the reduction in sensible heat and vaporization duty.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    26
    References
    4
    Citations
    NaN
    KQI
    []