Soft-Output Finite Alphabet Equalization for mmWAVE Massive MIMO.

2020 
Next-generation wireless systems are expected to combine millimeter-wave (mmWave) and massive multi-user multiple-input multiple-output (MU-MIMO) technologies to deliver high data-rates. These technologies require the basestations (BSs) to process high-dimensional data at extreme rates, which results in high power dissipation and system costs. Finite-alphabet equalization has been proposed recently to reduce the power consumption and silicon area of uplink spatial equalization circuitry at the BS by coarsely quantizing the equalization matrix. In this work, we improve upon finite-alphabet equalization by performing unbiased estimation and soft-output computation for coded systems. By simulating a massive MU-MIMO system that uses orthogonal frequency-division multiplexing and per-user convolutional coding, we show that soft-output finite-alphabet equalization delivers competitive error-rate performance using only 1 to 3 bits per entry of the equalization matrix, even for challenging mmWave channels.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    22
    References
    0
    Citations
    NaN
    KQI
    []