Right Ventricular Longitudinal Conduction Delay in Patients with Brugada Syndrome

2021 
BACKGROUND The mechanism of Brugada syndrome (BrS) is still unclear, with different researchers favoring either the repolarization or depolarization hypothesis. Prolonged longitudinal activation time has been verified in only a small number of human right ventricles (RVs). The purpose of the present study was to demonstrate RV conduction delays in BrS. METHODS The RV outflow tract (RVOT)-to-RV apex (RVA) and RVA-to-RVOT conduction times were measured by endocardial stimulation and mapping in 7 patients with BrS and 14 controls. RESULTS Patients with BrS had a longer PR interval (180 ± 12.6 vs. 142 ± 6.7 ms, P = 0.016). The RVA-to-RVOT conduction time was longer in the patients with BrS than in controls (stimulation at 600 ms, 107 ± 9.9 vs. 73 ± 3.4 ms, P = 0.001; stimulation at 500 ms, 104 ± 12.3 vs. 74 ± 4.2 ms, P = 0.037; stimulation at 400 ms, 107 ±12.2 vs. 73 ± 5.1 ms, P = 0.014). The RVOT-to-RVA conduction time was longer in the patients with BrS than in controls (stimulation at 500 ms, 95 ± 10.3 vs. 62 ± 4.1 ms, P = 0.007; stimulation at 400 ms, 94 ±11.2 vs. 64 ± 4.6 ms, P = 0.027). The difference in longitudinal conduction time was not significant when isoproterenol was administered. CONCLUSION The patients with BrS showed an RV longitudinal conduction delay obviously. These findings suggest that RV conduction delay might contribute to generate the BrS phenotype.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    0
    Citations
    NaN
    KQI
    []