Hydrocarbon potential of Early Cretaceous lacustrine sediments from Bima Formation, Yola Sub-basin, Northern Benue Trough, NE Nigeria: Insight from organic geochemistry and petrology

2017 
Abstract The Early Cretaceous lacustrine sediments from Bima Formation in the Yola Sub-basin, Northern Benue Trough, northeastern Nigeria were studied based on organic geochemistry and petrology. This is in other to provide information on hydrocarbon generation potential; organic matter type (quality), richness (quantity), origin/source inputs, redox conditions (preservation) and thermal maturation in relation to thermal effect of Tertiary volcanics. The total organic carbon (TOC) contents ranges from 0.38 to 0.86 wt % with extractable organic matter (EOM) below 1000 ppm and pyrolysis S2 yield values from 0.16 to 0.68 mg/g, suggesting poor to fair source rock richness. Based on kerogen pyrolysis and microscopy coupled with biomarker parameters, the organic matters contain Type I (lacustrine algae), Type III (terrestrially derived land-plants) and Type IV kerogens deposited in a mixed lacustrine-terrestrial environment under suboxic to relatively anoxic conditions. This suggest potential occurrence of Early Cretaceous lacustrine sediments (perhaps Lower Cretaceous petroleum system) in Yola Sub-basin of the Northern Benue Trough as present in the neighbouring basins of Chad, Niger and Sudan Republics that have both oil and gas generation potential within the same rift trend (WCARS). Vitrinite reflectance (%Ro) and Tmax values of the lacustrine shales ranges from 1.12 to 2.32 VRo% and 448–501 °C, respectively, indicating peak-late to post-maturity stage. This is supported by the presence of dark brown palynomorphs, amorphous organic matter and phytoclasts as well as inertinite macerals. Consequently, the organic matters in the lacustrine shales of Bima Formation in the Yola Sub-basin appeared as a source of oil (most likely even waxy) and gas prone at a relatively deeper part of the basin. However, the high thermal maturity enhanced the organic matters and most of the hydrocarbons that formed in the course of thermal maturation were likely expelled to the reservoir rock units and further cracked into secondary or major gas probably due to thermal effects of Tertiary volcanic intrusion known to be present in the basin.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    44
    References
    11
    Citations
    NaN
    KQI
    []