Fast estimation of arterial vascular parameters for transient and steady beats with application to hemodynamic state under variant gravitational conditions

1999 
Numerous parameter estimation techniques exist for characterizing the arterial system using electrical circuit analogs. These techniques are often limited by requiring steady-state beat conditions and can be computationally expensive. Therefore, a new method was developed to estimate arterial parameters during steady and transient beat conditions. A four-element electrical analog circuit was used to model the arterial system. The input impedance equations for this model were derived and reduced to their real and imaginary components. Next, the physiological input impedance was calculated by computing fast Fourier transforms of physiological aortic pressure (AoP) and aortic flow. The approach was to reduce the error between the calculated model impedance and the physiological arterial impedance using a Jacobian matrix technique which iteratively adjusted arterial parameter values. This technique also included algorithms for estimating physiological arterial parameters for nonsteady physiological AoP beats. The method was insensitive to initial parameter estimates and to small errors in the physiological impedance coefficients. When the estimation technique was applied to in vivo data containing steady and transient beats it reliably estimated Windkessel arterial parameters under a wide range of physiological conditions. Further, this method appears to be more computationally efficient compared to time-domain approaches. © 1999 Biomedical Engineering Society.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    20
    References
    14
    Citations
    NaN
    KQI
    []