Pathogen community composition and co-infection patterns in a wild community of rodents

2020 
Rodents are major reservoirs of pathogens that can cause disease in humans and livestock. It is therefore important to know what pathogens naturally circulate in rodent populations, and to understand the factors that may influence their distribution in the wild. Here, we describe the incidence and distribution patterns of a range of endemic and zoonotic pathogens circulating among rodent communities in northern France. The community sample consisted of 713 rodents, including 11 host species from diverse habitats. Rodents were screened for virus exposure (hantaviruses, cowpox virus, Lymphocytic choriomeningitis virus, Tick-borne encephalitis virus) using antibody assays. Bacterial communities were characterized using 16S rRNA amplicon sequencing of splenic samples. Multiple correspondence (MCA), regression and association screening (SCN) analyses were used to determine the degree to which extrinsic factors contributed to pathogen community structure, and to identify patterns of associations between pathogens within hosts. We found a rich diversity of bacterial genera, with 36 known or suspected to be pathogenic. We revealed that host species is the most important determinant of pathogen community composition, and that hosts that share habitats can have very different pathogen communities. Pathogen diversity and co-infection rates also vary among host species. Aggregation of pathogens responsible for zoonotic diseases suggests that some rodent species may be more important for transmission risk than others. Moreover we detected positive associations between several pathogens, including Bartonella, Mycoplasma species, Cowpox virus (CPXV) and hantaviruses, and these patterns were generally specific to particular host species. Altogether, our results suggest that host and pathogen specificity is the most important driver of pathogen community structure, and that interspecific pathogen-pathogen associations also depend on host species.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    152
    References
    2
    Citations
    NaN
    KQI
    []