A Natural Polymer-Based Porous Sponge with Capillary-Mimicking Microchannels for Rapid Hemostasis

2020 
ABSTRACT Natural polymer materials have attracted great attention in the field of hemostasis because of their wide range of source, nontoxicity, hydrophilicity, and air permeability. In the present study, two natural polymers composed of carboxymethyl chitosan (CMCS) and sodium carboxymethylcellulose (CMC-Na) plus γ-(2,3-epoxypropoxy) propytrimethoxysilane (KH560) that serves as a crosslinking agent were selected to synthesize a capillary-mimicking composite hemostatic (CCK) sponge with a low density, interconnected microchannel architecture, suitable mechanical strength, high resilience, and ultrastrong liquid absorption capacity. The introduction of a large number of hydrophilic carboxymethyl functional groups and the design of capillary-mimicking structures formed by the ice segregation-induced self-assembly (ISISA) process endowed the CCK sponges with an ultrastrong liquid absorption capacity, which significantly enhanced the hemostatic ability of the materials. Both in vivo and in vitro hemostatic experiments confirmed the potential of the CCK sponges to achieve rapid hemostasis. Additionally, cytotoxicity and hemolysis assays showed that the CCK sponges exhibited good biocompatibility and hemocompatibility. The possible hemostatic mechanism was also discussed in this study. In conclusion, the capillary-mimicking hemostatic sponge exhibits a high potential to induce rapid hemostasis in prehospital emergency and clinical settings.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    50
    References
    12
    Citations
    NaN
    KQI
    []